NASA Mars Rover’s perseverance draws the first oxygen from the red planet

Copyright 2021 PR Newswire. All rights reserved

WASHINGTON, April 21, 2021 / PRNewswire / – The growing list of “premiums” for Perseverance, NASA’s newest six-wheeled robot on the Martian surface, includes turning some of the Red Carbon’s thin, carbon-rich atmosphere into oxygen. An experimental tool the size of a toaster aboard Perseverance, called the In-Situ Resource Use Experiment (MOXIE) on Mars, performed the task. The test took place 20th of April, the 60th Martian day, or ground, since the mission landed February 18th.

While the demonstration of technology is just beginning, it could pave the way for science fiction to become a scientific fact – the isolation and storage of oxygen on Mars to help rockets that could lift astronauts off the planet’s surface. Such devices could one day provide breathable air to the astronauts themselves. MOXIE is a technological exploration investigation – as is the Mars Environmental Dynamics Analyzer (MEDA) – and is sponsored by NASA’s Space Technology Mission Directorate (STMD) and the Human Exploration and Operations Mission Directorate.

“This is a critical first step in converting carbon dioxide into oxygen on Mars,” he said Jim Reuter, associate administrator for STMD. “MOXIE has more work to do, but the results of this technological demonstration are full of promise as we move toward our goal of one day seeing people on Mars. Oxygen is not just what we breathe. The rocket engine depends on oxygen. and future explorers will depend on fuel production on Mars to make the journey home. “

For rockets or astronauts, oxygen is essential, said MOXIE’s lead researcher, Michael Hecht from Massachusetts Institute of Technology The hay observatory.

In order to burn its fuel, a rocket must have more oxygen by weight. Removing four astronauts from the Martian surface in a future mission would require about 15,000 pounds (7 metric tons) of rocket fuel and 55,000 pounds (25 metric tons) of oxygen. Instead, astronauts living and working on Mars would need much less oxygen to breathe. “Astronauts who spend a year on the surface will probably use a metric ton between them,” Hecht said.

Transporting 25 metric tons of oxygen from Earth to Mars would be a difficult task. Transporting a one-ton oxygen converter – a larger and more powerful descendant of MOXIE that could produce those 25 tons – would be much more economical and practical.

Mars’ atmosphere is 96% carbon dioxide. MOXIE works by separating oxygen atoms from carbon dioxide molecules, which are made up of one carbon atom and two oxygen atoms. A residual product, carbon monoxide, is emitted into the Martian atmosphere.

The conversion process requires high levels of heat to reach a temperature of about 1,470 degrees Fahrenheit (800 Celsius). To do this, the MOXIE unit is made of heat-tolerant materials. These include 3D-printed nickel alloy parts that heat and cool the gases flowing through it and a light airgel that helps maintain heat. A thin layer of gold on the outside of the MOXIE reflects infrared heat, preventing it from radiating to the outside and potentially damaging other parts of perseverance.

In this first operation, MOXIE’s oxygen production was quite modest – about 5 grams, the equivalent of about 10 minutes worth of respirable oxygen for an astronaut. MOXIE is designed to generate up to 10 grams of oxygen per hour.

This technological demonstration was designed to ensure that the instrument survived the launch from Earth, a nearly seven-month journey through deep space and touchdown with Perseverance on February 18th. MOXIE is expected to extract oxygen at least nine times during a Martian year (almost two years on Earth).

These cycles of oxygen production will come in three phases. The first phase will check and characterize the function of the instrument, while the second phase will run the instrument in various atmospheric conditions, such as different times of the day and seasons. In the third phase, Hecht said: “we will push the envelope” – trying new modes of operation or introducing “new wrinkles, such as a round in which we compare operations at three or more different temperatures”.

“MOXIE is not just the first instrument to produce oxygen in another world,” he said Trudy Kortes, director of technological demonstrations within STMD. It is the first technology of its kind that will help future missions “live off the land”, using elements of the environment of another world, also known as the use of resources in situ.

“It takes regolith, the substance you find on earth, to introduce it through a processing plant, turn it into a large structure or take in carbon dioxide – most of the atmosphere – and you turn it into oxygen, ”she said. “This process allows us to turn these abundant materials into usable things: propellant, breathable air or, combined with hydrogen, water.”

More about perseverance

A key goal of the Perseverance on Mars mission is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the geology of the planet and the climate of the past, will pave the way for human exploration of the Red Planet and will be the first mission to collect and hide the rock and Martian rule (broken rock and dust).

Subsequent NASA missions, in cooperation with the ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for further analysis.

The Mars 2020 Perseverance Mission is part of NASA’s approach to exploring the Moon on Mars, which includes Artemis missions to the Moon, which will help prepare for human exploration of the Red Planet.

NASA ‘s jet propulsion laboratory in Southern California, which is managed for NASA by Caltech in Pasadena, California, built and manages the operations of the Perseverance rover.

For more about perseverance:


Cision View original content to download multimedia: http: //